
ois Documentation
Release 0.1a0

Martin Beroiz

Nov 26, 2022

Contents

1 Installation 3
1.1 Contents: . 3

Bibliography 9

Python Module Index 11

Index 13

i

ii

ois Documentation, Release 0.1a0

OIS is a Python package and a C command-line program to perform optimal image subtraction on astronomical
images.

It offers different methods to subtract images:

• Modulated multi-Gaussian kernel (as described in [alard1998])

• Delta basis kernel (as described in [bramich2008])

• Adaptive Delta Basis kernel (as described in [miller2008])

Main features:

• Each method can (optionally) simultaneously fit and remove common background.

• Each method can resolve small translations on the image

• Adaptive Bramich can resolve small relative rotations on the images

(See Methods)

Contents 1

ois Documentation, Release 0.1a0

2 Contents

CHAPTER 1

Installation

Install it directly from PyPI using pip:

pip install ois

1.1 Contents:

1.1.1 Usage

Optimal Subtraction

If your image has a relatively narrow field of view where your PSF doesn’t change significatively across the field, you
can use optimal_system on the default settings:

>>> from ois import optimal_system
>>> diff_image, optimal_image, kernel, background = optimal_system(test_image,
→˓refimage)

Where (See Theory):

• test_image is the image we want to analize, 𝐼

• refimage is an archive or reference image from the same location in the sky, 𝑅

• diff_image is 𝐷 = 𝐼 − (𝑅⊗𝐾 +𝐵𝑘𝑔)

• optimal_image is 𝑅⊗𝐾 +𝐵𝑘𝑔

• kernel is 𝐾

• background is 𝐵𝑘𝑔

Note: test_image must be previously aligned with refimage

3

ois Documentation, Release 0.1a0

Note: The subtraction works best when refimage is of better quality than test_image.

The default method for kernel fit is Bramich (2008), which uses the information of all pixels in the image and fits for
every pixel in the convolution kernel independently. The available methods are "Alard-Lupton", "Bramich"
and "AdaptiveBramich" (see Methods).

Refer to the Module API for a complete description of the method.

Working with bad pixels (masks)

If your reference image or test image have sections of bad pixels, it can distort the kernel estimation. This is especially
true when the fitting algorithm uses all the pixels in the image. Saturated stars can also confuse the fit of the convolution
kernel.

To let ois know which pixels are good, you can create a numpy masked array, with True on bad pixels. The ois
subtraction methods will ignore completely the information on those bad pixels.

The returned image, will have a combined OR mask from the mask in test_image and the mask on refimage
expanded to exclude pixels that would have used defective pixels in the convolution.

If no mask is provided in both test_image and refimage, the returned image will be a plain numpy array (no
mask).

1.1.2 Theory

General Assumptions

All of the methods assume we have a reference image 𝑅 and a science image 𝐼 that can be approximately modelled
as:

𝐼 ≈ 𝑅⊗𝐾 +𝐵𝑘𝑔

for some background 𝐵𝑘𝑔 and some kernel 𝐾.

The optimal image subtraction 𝐷 is then:

𝐷 = 𝐼 − (𝑅⊗𝐾 +𝐵𝑘𝑔)

The methods differ in their modelling of 𝐾.

Warning: In the ideal case of perfect subtraction, 𝐷 should contain only noise and optical transients. In practice,
tiny image misalignments, saturated stars and poor PSF fitting can leave subtraction artifacts near sources.

Methods

Alard & Lupton

Alard and Lupton [alard1998] introduced a method to simultaneously fit a background 𝐵𝑘𝑔 and a convolution kernel
𝐾 that will minimize the difference between a reference image 𝑅 and an another science image 𝐼 .

𝐼 ≈ 𝑅⊗𝐾 +𝐵𝑘𝑔

4 Chapter 1. Installation

https://ui.adsabs.harvard.edu/abs/2008MNRAS.386L..77B/abstract

ois Documentation, Release 0.1a0

This method assumes that the convolution kernel can be approximated by a linear combination of fixed Gaussians,
where the linear coefficients are left free to vary. In addition, each Gaussian is modulated with a polynomial of an
arbitrary degree.

𝐾 =
∑︁
𝑖

𝑎𝑖𝐵𝑖

=
∑︁
𝑛

𝑎𝑛 ×

⎡⎣exp(︂− (𝑢− 𝑢0)
2

2𝜎2
𝑢

+
(𝑣 − 𝑣0)

2

2𝜎2
𝑣

)︂∑︁
𝑑𝑥
𝑛

∑︁
𝑑𝑦
𝑛

𝑢𝑑𝑥
𝑛𝑣𝑑

𝑦
𝑛

⎤⎦

Note: The centre, width and orientation of the Gaussians are fixed beforehand as well as the number of Gaussians to
use in the expansion.

In OIS this is specified with a list of dictionaries, one for each gaussian we want to use. Below is an example of a basis
with 3 Gaussians:

gausslist=[{center: (5, 5), sx: 2., sy: 2., modPolyDeg: 3},
{sx: 1.0, sy: 2.5, modPolyDeg: 1},
{sx: 3.0, sy: 1.0},]

Here center is the (row, column) of the center pixel of the Gaussian in the kernel. For example, for a kernel of shape
(11, 17), center=(5, 8) would yield a centered Gaussian. Center coordinates may be float values. If not
specified, center defaults to the kernel’s center.

The parameters sx and sy are the 𝜎𝑢 and 𝜎𝑣 of the Gaussian profile.

The degree of the 2D polynomial that modulates the Gaussian is set by the parameter modPolyDeg.

Bramich

The method developed in [bramich2008] modifies Alard-Lupton making each pixel of the kernel an independent
parameter to fit. This is equivalent as having a vector basis consisting of Delta kernels. It can also simultaneously fit
a polynomial background.

𝐾 =
∑︁
𝑛

𝑎𝑛 × 𝛿𝑛𝑛′

This method does not make assumptions on the kernel shape and can thus model completely arbitrary kernels. It can
also correct for small translations between the images.

While more accurate, this method is computationally more expensive than Alard & Lupton’s.

Warning: Since each pixel is treated independently, a 11 by 11 kernel will have 121 free parameters just for the
kernel. It grows quadratically with the kernel side. This needs to be taken in consideration for large kernels.

Adaptive Bramich

Like Bramich, this method also treats each pixel independently, but it will also multiply each pixel by a polynomial
on the coordinates of the image.

This requires a special type of convolution where the kernel varies point to point in the image.

It is especially suited for situations where the PSF varies significatively across the image.

1.1. Contents: 5

ois Documentation, Release 0.1a0

The method is described in more detail in [miller2008].

Warning: Just like Bramich, the number of free parameters scales quadratically with the kernel side. Furthermore,
the degree of the polynomial multiplies the number of parameters by (deg + 1) * (deg + 2) / 2. This needs to be
taken in consideration for large kernels.

1.1.3 Command-line program

The C command-line program ois is somewhat limited compared to its Python counterpart. It can only perform
Adaptive Bramich method without simultanous background fit. For that reason we suggest removing the background
on the images to be used.

OIS on the command line will read the reference and science images from FITS files on the file system. It will only
output the difference image. It will not output the kernel or optimal image.

Note: To perform Bramich method instead of Adaptive Bramich, set the command line argument -kd to 0

Installation

To compile and execute the C command-line program:

$ git clone https://github.com/toros-astro/ois.git
$ cd ois
$ make ois
$./ois --help

Usage

$ ois -ks, --kernel-side <int> -kd, --kernel-poly-deg <int> -ref <filename> -sci
→˓<filename> [-o <filename>] [-h, --help] [--version]

Command-line arguments:

-ks, --kernel-side
The side in pixels of the kernel to calculate the optimal difference. Must be an odd number.

-kd, --kernel-poly-deg
Degree of the interpolating polynomial for the variable kernel.

-ref
The reference image path.

-sci
The science image path.

-o
[Optional] The path where the subtraction FITS file will be written. Default value is “diff_img.fits”.

-h, --help
Print usage help and exit.

6 Chapter 1. Installation

ois Documentation, Release 0.1a0

--version
Print version information and exit.

1.1.4 Module API

OIS is a package to perform optimal image subtraction on astronomical images. It offers different methods to subtract
images:

• Modulated multi-Gaussian kernel

• Delta basis kernel

• Adaptive Delta Basis kernel

Each method can (optionally) simultaneously fit and remove common background.

Usage:

>>> from ois import optimal_system
>>> difference, optimalImage, optimalKernel, background =

optimal_system(image, referenceImage)

(c) Martin Beroiz email: <martinberoiz@gmail.com> University of Texas at San Antonio

exception ois.EvenSideKernelError

ois.convolve2d_adaptive(image, kernel, poly_degree)
Convolve image with the adaptive kernel of poly_degree degree.

ois.eval_adpative_kernel(kernel, x, y)
Return the adaptive kernel at position (x, y) = (col, row).

ois.optimal_system(image, refimage, kernelshape=(11, 11), bkgdegree=None, method=’Bramich’,
gridshape=None, **kwargs)

Do Optimal Image Subtraction and return optimal image, kernel and background.

This is an implementation of a few Optimal Image Subtraction algorithms. They all (optionally) simultaneously
fit a background.

Parameters

• gridshape – A tuple containing the number of vertical and horizontal divisions of a grid.
Subtraction will be performed on each grid element. None is equivalent to a (1, 1) grid
(no grid).

• kernelshape – Shape of the kernel to use. Must be of odd size.

• bkgdegree – Degree of the polynomial to fit the background. To turn off background
fitting set this to None.

• method – One of the following strings.

– "Bramich": A Delta basis for the kernel (all pixels fit independently)

– "AdaptiveBramich": Same as Bramich, but with a polynomial variation across the
image. It needs the parameter poly_degree, which is the polynomial degree of the
variation.

– "Alard-Lupton": A modulated multi-Gaussian kernel. It needs the gausslist key-
word.

• poly_degree – Needed only for AdaptiveBramich. It is the degree of the polynomial for
the kernel spatial variation.

1.1. Contents: 7

mailto:martinberoiz@gmail.com

ois Documentation, Release 0.1a0

• gausslist – Needed only for Alard-Lupton. A list of dictionaries with info for the mod-
ulated multi-Gaussian. Dictionary keys are:

– center: a (row, column) tuple for the center of the Gaussian. Default: kernel center.

– modPolyDeg: the degree of the modulating polynomial. Default: 2

– sx: sigma in x direction. Default: 2.

– sy: sigma in y direction. Deafult: 2.

All keys are optional. Example:

gausslist=[{center: (5, 5), sx: 2., sy: 2., modPolyDeg: 3},
{sx: 1.0, sy: 2.5, modPolyDeg: 1},
{sx: 3.0, sy: 1.0},]

Returns difference, optimal_image, kernel, background

Raises EvenSideKernelError – If any dimension of kernelshape is even.

8 Chapter 1. Installation

Bibliography

[alard1998] “A Method for Optimal Image Subtraction” - C. Alard, R. H. Lupton, 1997.

[bramich2008] “A New Algorithm For Difference Image Analysis” - D.M. Bramich, 2008.

[miller2008] “Optimal Image Subtraction Method: Summary Derivations, Applications, and Publicly Shared Appli-
cation Using IDL” - J. PATRICK MILLER et al., 2008.

9

https://ui.adsabs.harvard.edu/abs/1998ApJ...503..325A/abstract
https://ui.adsabs.harvard.edu/abs/2008MNRAS.386L..77B/abstract
https://ui.adsabs.harvard.edu/abs/2008PASP..120..449M/abstract
https://ui.adsabs.harvard.edu/abs/2008PASP..120..449M/abstract

ois Documentation, Release 0.1a0

10 Bibliography

Python Module Index

o
ois, 7

11

ois Documentation, Release 0.1a0

12 Python Module Index

Index

Symbols
-version

command line option, 6
-h, -help

command line option, 6
-kd, -kernel-poly-deg

command line option, 6
-ks, -kernel-side

command line option, 6
-o

command line option, 6
-ref

command line option, 6
-sci

command line option, 6

C
command line option

-version, 6
-h, -help, 6
-kd, -kernel-poly-deg, 6
-ks, -kernel-side, 6
-o, 6
-ref, 6
-sci, 6

convolve2d_adaptive() (in module ois), 7

E
eval_adpative_kernel() (in module ois), 7
EvenSideKernelError, 7

O
ois (module), 7
optimal_system() (in module ois), 7

13

	Installation
	Contents:

	Bibliography
	Python Module Index
	Index

