

Optimal Image Subtraction (OIS)

OIS is a Python package and a C command-line program to perform optimal image subtraction on astronomical images.

It offers different methods to subtract images:

	Modulated multi-Gaussian kernel (as described in [alard1998])

	Delta basis kernel (as described in [bramich2008])

	Adaptive Delta Basis kernel (as described in [miller2008])

Main features:

	Each method can (optionally) simultaneously fit and remove common background.

	Each method can resolve small translations on the image

	Adaptive Bramich can resolve small relative rotations on the images

(See Methods)

Installation

Install it directly from PyPI using pip:

pip install ois

Contents:

	Usage
	Optimal Subtraction

	Working with bad pixels (masks)

	Theory
	General Assumptions

	Methods

	Command-line program
	Installation

	Usage

	Module API

Usage

Optimal Subtraction

If your image has a relatively narrow field of view where your PSF doesn’t change significatively across the field,
you can use optimal_system on the default settings:

>>> from ois import optimal_system
>>> diff_image, optimal_image, kernel, background = optimal_system(test_image, refimage)

Where (See Theory):

	test_image is the image we want to analize, \(I\)

	refimage is an archive or reference image from the same location in the sky, \(R\)

	diff_image is \(D = I - (R \otimes K + B_{kg})\)

	optimal_image is \(R \otimes K + B_{kg}\)

	kernel is \(K\)

	background is \(B_{kg}\)

Note

test_image must be previously aligned with refimage

Note

The subtraction works best when refimage is of better quality than test_image.

The default method for kernel fit is Bramich (2008) [https://ui.adsabs.harvard.edu/abs/2008MNRAS.386L..77B/abstract], which uses the information of all pixels in the image and fits for every pixel in the convolution kernel independently.
The available methods are "Alard-Lupton", "Bramich" and "AdaptiveBramich" (see Methods).

Refer to the Module API for a complete description of the method.

Working with bad pixels (masks)

If your reference image or test image have sections of bad pixels, it can distort the kernel estimation.
This is especially true when the fitting algorithm uses all the pixels in the image.
Saturated stars can also confuse the fit of the convolution kernel.

To let ois know which pixels are good, you can create a numpy masked array, with True on bad pixels.
The ois subtraction methods will ignore completely the information on those bad pixels.

The returned image, will have a combined OR mask from the mask in test_image and the mask on refimage expanded to exclude pixels that would have used defective pixels in the convolution.

If no mask is provided in both test_image and refimage, the returned image will be a plain numpy array (no mask).

Theory

General Assumptions

All of the methods assume we have a reference image \(R\) and a
science image \(I\) that can be approximately modelled as:

\[I \approx R \otimes K + B_{kg}\]

for some background \(B_{kg}\) and some kernel \(K\).

The optimal image subtraction \(D\) is then:

\[D = I - (R \otimes K + B_{kg})\]

The methods differ in their modelling of \(K\).

Warning

In the ideal case of perfect subtraction, \(D\) should contain only noise and optical transients.
In practice, tiny image misalignments, saturated stars and poor PSF fitting can leave subtraction artifacts near sources.

	alard1998

	“A Method for Optimal Image Subtraction” - C. Alard, R. H. Lupton, 1997. [https://ui.adsabs.harvard.edu/abs/1998ApJ...503..325A/abstract]

	bramich2008

	“A New Algorithm For Difference Image Analysis” - D.M. Bramich, 2008. [https://ui.adsabs.harvard.edu/abs/2008MNRAS.386L..77B/abstract]

	miller2008

	“Optimal Image Subtraction Method: Summary Derivations, Applications, and Publicly Shared Application Using IDL” - J. PATRICK MILLER et al., 2008. [https://ui.adsabs.harvard.edu/abs/2008PASP..120..449M/abstract]

Methods

Alard & Lupton

Alard and Lupton [alard1998] introduced a method to simultaneously fit a background \(B_{kg}\) and a convolution kernel \(K\) that will minimize the difference between a reference image \(R\) and an another science image \(I\).

\[I \approx R \otimes K + B_{kg}\]

This method assumes that the convolution kernel can be approximated by a linear combination of fixed Gaussians, where the linear coefficients are left free to vary.
In addition, each Gaussian is modulated with a polynomial of an arbitrary degree.

\[\begin{split}K &= \sum_i a_i B_i \\
 &= \sum_n a_n \times \left[\exp \left(- \frac{(u - u_0)^2}{2 \sigma_u^2} + \frac{(v - v_0)^2}{2 \sigma_v^2} \right) \sum_{d_n^x} \sum_{d_n^y} u^{d_n^x} v^{d_n^y} \right]\end{split}\]

Note

The centre, width and orientation of the Gaussians are fixed beforehand as well as the number of Gaussians to use in the expansion.

In OIS this is specified with a list of dictionaries, one for each gaussian we want to use.
Below is an example of a basis with 3 Gaussians:

gausslist=[{center: (5, 5), sx: 2., sy: 2., modPolyDeg: 3},
 {sx: 1.0, sy: 2.5, modPolyDeg: 1},
 {sx: 3.0, sy: 1.0},]

Here center is the (row, column) of the center pixel of the Gaussian in the kernel.
For example, for a kernel of shape (11, 17), center=(5, 8) would yield a centered Gaussian.
Center coordinates may be float values. If not specified, center defaults to the kernel’s center.

The parameters sx and sy are the \(\sigma_u\) and \(\sigma_v\) of the Gaussian profile.

The degree of the 2D polynomial that modulates the Gaussian is set by the parameter modPolyDeg.

Bramich

The method developed in [bramich2008] modifies Alard-Lupton making each pixel of the kernel an independent parameter to fit.
This is equivalent as having a vector basis consisting of Delta kernels.
It can also simultaneously fit a polynomial background.

\[K = \sum_n a_n \times \delta_{nn'}\]

This method does not make assumptions on the kernel shape and can thus model completely arbitrary kernels.
It can also correct for small translations between the images.

While more accurate, this method is computationally more expensive than Alard & Lupton’s.

Warning

Since each pixel is treated independently, a 11 by 11 kernel will have 121 free parameters just for the kernel.
It grows quadratically with the kernel side. This needs to be taken in consideration for large kernels.

Adaptive Bramich

Like Bramich, this method also treats each pixel independently,
but it will also multiply each pixel by a polynomial on the coordinates of the image.

This requires a special type of convolution where the kernel varies point to point in the image.

It is especially suited for situations where the PSF varies significatively across the image.

The method is described in more detail in [miller2008].

Warning

Just like Bramich, the number of free parameters scales quadratically with the kernel side.
Furthermore, the degree of the polynomial multiplies the number of parameters by (deg + 1) * (deg + 2) / 2.
This needs to be taken in consideration for large kernels.

Command-line program

The C command-line program ois is somewhat limited compared to its Python counterpart.
It can only perform Adaptive Bramich method without simultanous background fit.
For that reason we suggest removing the background on the images to be used.

OIS on the command line will read the reference and science images from FITS files
on the file system. It will only output the difference image.
It will not output the kernel or optimal image.

Note

To perform Bramich method instead of Adaptive Bramich, set the command line argument -kd to 0

Installation

To compile and execute the C command-line program:

$ git clone https://github.com/toros-astro/ois.git
$ cd ois
$ make ois
$./ois --help

Usage

$ ois -ks, --kernel-side <int> -kd, --kernel-poly-deg <int> -ref <filename> -sci <filename> [-o <filename>] [-h, --help] [--version]

Command-line arguments:

	
-ks, --kernel-side

	The side in pixels of the kernel to calculate the optimal difference. Must be an odd number.

	
-kd, --kernel-poly-deg

	Degree of the interpolating polynomial for the variable kernel.

	
-ref

	The reference image path.

	
-sci

	The science image path.

	
-o

	[Optional] The path where the subtraction FITS file will be written.
Default value is “diff_img.fits”.

	
-h, --help

	Print usage help and exit.

	
--version

	Print version information and exit.

Module API

OIS is a package to perform optimal image subtraction on astronomical images.
It offers different methods to subtract images:

	Modulated multi-Gaussian kernel

	Delta basis kernel

	Adaptive Delta Basis kernel

Each method can (optionally) simultaneously fit and remove common background.

Usage:

>>> from ois import optimal_system
>>> difference, optimalImage, optimalKernel, background =
 optimal_system(image, referenceImage)

(c) Martin Beroiz
email: <martinberoiz@gmail.com>
University of Texas at San Antonio

	
exception ois.EvenSideKernelError

	

	
ois.convolve2d_adaptive(image, kernel, poly_degree)

	Convolve image with the adaptive kernel of poly_degree degree.

	
ois.eval_adpative_kernel(kernel, x, y)

	Return the adaptive kernel at position (x, y) = (col, row).

	
ois.optimal_system(image, refimage, kernelshape=(11, 11), bkgdegree=None, method='Bramich', gridshape=None, **kwargs)

	Do Optimal Image Subtraction and return optimal image, kernel
and background.

This is an implementation of a few Optimal Image Subtraction algorithms.
They all (optionally) simultaneously fit a background.

	Parameters

	
	gridshape – A tuple containing the number of vertical and horizontal
divisions of a grid. Subtraction will be performed on each grid
element. None is equivalent to a (1, 1) grid (no grid).

	kernelshape – Shape of the kernel to use. Must be of odd size.

	bkgdegree – Degree of the polynomial to fit the background.
To turn off background fitting set this to None.

	method – One of the following strings.

	"Bramich": A Delta basis for the kernel (all pixels fit
independently)

	"AdaptiveBramich": Same as Bramich, but with a polynomial
variation across the image.
It needs the parameter poly_degree, which is the polynomial
degree of the variation.

	"Alard-Lupton": A modulated multi-Gaussian kernel.
It needs the gausslist keyword.

	poly_degree – Needed only for AdaptiveBramich. It is the degree
of the polynomial for the kernel spatial variation.

	gausslist – Needed only for Alard-Lupton. A list of dictionaries with
info for the modulated multi-Gaussian.
Dictionary keys are:

	center: a (row, column) tuple for the center of the Gaussian.
Default: kernel center.

	modPolyDeg: the degree of the modulating polynomial.
Default: 2

	sx: sigma in x direction. Default: 2.

	sy: sigma in y direction. Deafult: 2.

All keys are optional. Example:

gausslist=[{center: (5, 5), sx: 2., sy: 2., modPolyDeg: 3},
 {sx: 1.0, sy: 2.5, modPolyDeg: 1},
 {sx: 3.0, sy: 1.0},]

	Returns

	difference, optimal_image, kernel, background

	Raises

	EvenSideKernelError – If any dimension of kernelshape is even.

 Python Module Index

 o

 		 	

 		
 o	

 	
 	
 ois	

Index

 Symbols
 | C
 | E
 | O

Symbols

 	
 	
 --version

 	command line option

 	
 -h, --help

 	command line option

 	
 -kd, --kernel-poly-deg

 	command line option

 	
 -ks, --kernel-side

 	command line option

 	
 	
 -o

 	command line option

 	
 -ref

 	command line option

 	
 -sci

 	command line option

C

 	
 	
 command line option

 	--version

 	-h, --help

 	-kd, --kernel-poly-deg

 	-ks, --kernel-side

 	-o

 	-ref

 	-sci

 	
 	convolve2d_adaptive() (in module ois)

E

 	
 	eval_adpative_kernel() (in module ois)

 	
 	EvenSideKernelError

O

 	
 	ois (module)

 	
 	optimal_system() (in module ois)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Optimal Image Subtraction (OIS)

 		
 Usage

 		
 Optimal Subtraction

 		
 Working with bad pixels (masks)

 		
 Theory

 		
 General Assumptions

 		
 Methods

 		
 Alard & Lupton

 		
 Bramich

 		
 Adaptive Bramich

 		
 Command-line program

 		
 Installation

 		
 Usage

 		
 Command-line arguments:

 		
 Module API

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

